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1. INTRODUCTION

Large-scale rotating machinery, such as turbines, generators or drums, often develop fatigue
cracks throughout their service life, which can severely damage machine components or
even lead to catastrophic failure. In general, non-destructive testing is used in inspection
intervals to prevent such failures, but recently vibration analysis has received much
attention in trying to continuously monitor the machine's condition. The advantages of
on-line condition monitoring are early warnings of machine failure and reduced downtime.
The vibration of a cracked shaft has been investigated by many researchers. Extensive

reviews of the literature on this topic have been compiled by Wauer [1] and more recently
by Dimarogonas [2]. In general, a slight decrease and splitting of the "rst natural frequency,
resonance at half the "rst natural frequency, a slight increase in the 1/rev. and 3/rev.
harmonic responses and a strong increase in the 2/rev. harmonic response are referred to as
key indicators for a transverse crack in a shaft [3}5]. These observations have been
con"rmed in experimental studies [5}7]. The results have been implemented in crack
detection systems in industry [4, 8]. There have been several incidents where vibration
monitoring led to the detection of a crack preventing catastrophic failure [9}11].
Until today, the greatest di$culty in crack detection and identi"cation remains the

quantitative evaluation of the crack parameters and the distinction between a developing
crack from other faults such as imbalance, misalignment, shaft bow, bearing failure, etc.
[8, 11]. The key issues in developing an accurate modelling technique of a cracked rotor are
the reduced sti!ness of the cracked cross-section, the variation of sti!ness over one
revolution due to the opening and closing of the crack (crack breathing) and the complexity
in geometry of the rotor, in particular in the region of the developing crack. Dimarogonas
[2] developed an analytical expression for the additional local crack compliance for
a six-degree-of-freedom cracked beam segment. Alternatively, the local compliance matrix
can be determined through a 3-D static "nite element (FE) analysis [4, 12, 13]. The crack
breathing mechanism has been modelled in a variety of ways, all resulting in a time-varying
local compliance matrix, which is incorporated into the dynamic equations for the rotor
[12, 14]. The equations of motion have been solved analytically [6], in a linearized form [5],
or numerically through time-integration from the initial conditions [4, 12, 15].
In most cases, the geometry of the rotor has been limited to a simple Laval rotor model

and a single transverse crack placed at various locations along the axis. Sekhar [16] and
Tsai and Wang [17] analyzed the behaviour of a rotor containing more than one crack.
Sekhar [15] also investigated the in#uence of a slanted crack in a shaft. Researchers using
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the Finite Element Method used beam elements of various dimensions and concentrated
masses along the shaft axis to model stepped shafts and turbine discs [4, 15]. However, it
becomes di$cult to vary the location of the crack since every relocation into a shaft segment
of di!erent geometry requires the development of a new cracked beam element. In
particular, a crack in a non-cylindrical rotor segment, such as blades or spokes, and areas of
stress concentrations render the previously developed cracked beam elements invalid. This
problem has not yet been addressed in the literature.

2. THEORY

A simple cracked shaft with a heavy mass at midspan is shown in Figure 1(a). Vibration of
the shaft under pure gravity load is caused by the changing sti!ness of the shaft depending
on whether the crack lies in the tensile or compressive region of axial normal stress. The
periodic opening and closing of the crack is called &&crack breathing''.

2.1. ANALYTICAL CRACK FORCE METHOD

The analytical approach is based on the simpli"ed two-degree-of-freedom model shown
in Figure 1(b). The equations of motion for this model can be written as

MxK#CxR #Kx"F, (1)
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and where � is the rotational velocity.
Figure 1. Cracked Laval rotor under gravity load. (a) The crack will be closed when the crack faces are in
compression, open when the crack faces are in tension. (b) Two-degree-of-freedom analytical model of a cracked shaft.
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Equation (1) can be linearized under the assumption of dominant static de#ection and by
decomposing K into a constant component of the uncracked structure, K

�
, and a variable

component due to crack breathing, �K(�t), yielding [5]

NMxK#CxR #K
�
x"F#�K (�t)x

������
, (2)

where x
������

is the static de#ection of the uncracked shaft.
The term �K (�t) x

������
is called the &&crack force'' and can be Fourier transformed into the

harmonics of the rotational speed:
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The method represents a very e$cient way of approximating the vibration of a cracked
rotor. However, it is con"ned to the analysis of one-dimensional (1-D) beam models.

2.2. THREE-DIMENSIONAL TRANSIENT ANALYSIS

To avoid the assumptions made above regarding the shaft and crack geometry, local
crack compliance, crack breathing mechanism and dominant static de#ection, the only
viable alternative is a transient analysis using 3-D solid "nite elements. Figure 2 shows an
FE model of a cracked shaft segment using eight-noded brick elements. The crack face
Figure 2. 3-D FE model of a cracked shaft segment. (a) Double nodes are used to model the crack faces. The
nodes are coupled when the crack is closed, uncoupled when it is open. The nodal coupling forces represent the
load transfer across the crack faces. (b) Uncoupling and re-coupling of nodes is used to simulate crack breathing
over one revolution.
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surfaces are modelled using double nodes which are identical in location but topologically
belong either to the right or the left crack face. When all crack face nodes are coupled, the
model is identical to the uncracked shaft, and the depicted nodal coupling forces represent
the load transfer across the crack faces. Therefore, the closed crack is modelled by coupling
the double nodes giving the rotor compressive sti!ness over the crack faces, while the open
crack is modelled by removing the coupling bonds allowing the crack faces to gap. The
analysis is performed through time-integration from the initial conditions, e.g., nominal
rotational velocity and static de#ection of the shaft, with the crack being fully closed in the
compressive region. The main drawback is that 3-D solid FE models of rotors can be very
large and computations become quite extensive making it an unfeasible solution procedure
for on-line crack identi"cation purposes. Furthermore, problems of stability for explicit or
convergence problems for implicit time-integration schemes pose additional di$culties.

2.3. THE NODAL CRACK FORCE APPROACH

In order to combine the advantages of the simple solution scheme for the analytical crack
force approach with the versatility in rotor and crack geometry of the 3-D transient
analysis, a new approach is introduced labelled as the 3-D nodal crack force approach. In
this approach, the same FE model is used as in the transient analysis, shown in Figure 2(a),
containing the coupled double nodes at the crack faces. However, the crack breathing
mechanism is approximated by nodal crack forces under the assumption of dominant static
de#ection. The uncracked rotor is analyzed under steady state conditions for the applied
load at various angles of rotation, and the resulting nodal coupling forces are recorded.
Since it is irrelevant if the crack face nodes are indeed coupled or if the coupling forces are
known a priori and are applied as external forces, it can be concluded that the steady state
solutions for both cases are indentical.
For the breathing crack, the coupled nodal forces exist when the crack is closed and the

crack faces are in compression, but they are missing when the crack is open and the crack
faces are in tension. This e!ect can be achieved by adding a time-dependent nodal crack
force as external load to the crack face nodes which will be of equal magnitude but opposite
direction of any tensile nodal coupling force while being zero at times when the nodal
coupling force is compressive; see Figure 3. Superposition of these two load cases results in
a crack breathing mechanism which only transfers compressive load over the crack faces.
Practically, the FE model with all nodes coupled is analyzed in a steady state analysis at

discrete points of angle of rotation under the applied load of the rotor, e.g., gravity. The
nodal coupling forces are recorded as discrete function of the angle of rotation,
F	
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(�t), and the nodal crack forces are computed by
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where F	


is the recorded nodal coupling force, F	

�
the nodal crack force and n the node

number of the crack face node.
The dynamic FE equations to be solved are
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Figure 3. Superposition of the nodal crack forces used to simulate crack breathing.
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is the solution to the uncracked rotor problem which has already been solved when
obtaining the nodal coupling forces; thus only

MuK
�
#CuR

�
#Ku

�
"F

�
(7)

needs to be solved to "nd the combined solution u.

2.4. SOLVING THE FE EQUATIONS IN A ROTATING CO-ORDINATE SYSTEM

The equations of motion of the nodal mass m rotating around the origin in the stationary
co-ordinate system (x, y, z), see Figure 4, are given by

MuK#CuR #K(u#(I!R)x
�
)"F, (8)

where

K(�t)"RK(�t"0)R�"RK
�
R�, R"
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sin�t cos�t 0
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.

Equation (8) can be transformed into the rotating co-ordinate system (�, �, z) by

x (�t)"R� (9)

resulting in

u"R�#(R!I)x
�

(10)

for the displacement from m to m�.
Replacing u in equation (8) with the expression from equation (10) results in
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�
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�
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Figure 4. Displacement of a point mass m rotating about z in stationary and rotating co-ordinates; m* denotes
the unperturbed position of m at time t.
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and "nally,

MR�K#(2MR� #CR)�R #(KR!��MR� #CR� )�"F#��MR� x
�
!CR� x

�
. (13)

Pre-multiplying equation (13) with R� yields

R�MR�K#(2R�MR� #R�CR)�R #(R�KR!��R�MR� #R�CR� )�

"R�F#��R�MR� x
�
!R�CR� x

�
. (14)

Under the assumption that mass and damping matrix are diagonal matrices of equal
members, i.e., M"diag(m,m,m) and C"diag(c, c, c), equation (14) can be written as

M�K#(2MG#C)�R #(K�!��M� #CG)�"R�F#��M� x
�
!CGx

�
, (15)

where

K�"R�KR"K
�
, M� "diag(m,m, 0), G"R�R� "�

0 !1 0

1 0 0

0 0 0

.

K� represents the constant sti!ness matrix of the rotor in rotating co-ordinates and does not
depend on �t; thus, equation (15) can be solved as a linear dynamic problem. The terms
��M� � and ��M� x

�
represent the centrifugal forces, 2MG�R the Coriolis force, and CG� and

CGx
�
the additional forces due to damping described in the rotating co-ordinate system.

The discrete set of nodal crack forces, F
�
(�t), is transferred into rotating co-ordinates and

Fourier transformed considering the "rst p#1 terms:
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Replacing the applied load R�F in equation (15) with R�F
�
yields
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The problem can now be solved in p#1 linear harmonic response analyses and the
solutions are superimposed:
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The computational savings of the nodal crack force approach over a complete transient
analysis are tremendous. For example, if the uncracked steady state solution (u

�
) and the

nodal coupling forces (F


) are evaluated in a series of linear analyses at an increment of 153

over one revolution, and the cracked vibration response is determined using the "rst six
Fourier coe$cients, the linear FE equations must be solved for a total of 30 times. In
comparison, a transient analysis over four revolutions with an incremental step of 53 and
approximately four iterations per step results in 1152 necessary solutions of the same
equations. This yields a computational savings factor of approximately 40 : 1 for the nodal
crack force approach, greater when symmetry can be used in determining the uncracked
steady state solution. Furthermore, any re-evaluation of the cracked vibration response for
a di!erent set of parameters requires only the six dynamic linear analyses, as long as the
uncracked steady state solution remains valid.

3. ANALYSIS AND RESULTS

Two example problems were solved to compare the two-degrees-of-freedom analytical
(anal.) and 3-D transient FE (tran.) methods and to verify the validity of the nodal crack
force (NCF) approach.

3.1. EXAMPLE 1*SHORT CANTILEVER SHAFT

Example 1 is a weightless cantilever shaft (D"40 mm, ¸"100 mm) under gravity load
with a heavy mass (m"257 kg) at its free end, as shown in Figure 5. The material properties
used were those of aluminium (E"70 GPa, �"0)3). No damping was considered
throughout the analysis. A transverse crack was located at midspan and the crack length to
shaft diameter ratio was a/D"0)25. The reduced sti!ness due to the crack in the analytical
model was computed using the method by Dimarogonas [2]. Crack breathing was
simulated using the reduced sti!ness of the fully open crack when the crack was in tension
and the uncracked shaft sti!ness otherwise. For the nodal crack force approach, the static
de#ectionwas calculated for one full revolution in increments of 153, and the nodal coupling
forces were recorded. The nodal crack forces and the analytical crack force were determined
by Fourier analysis considering the "rst six terms. The transient analysis was performed
using implicit time-integration and an incremental angle of rotation ��t"53 resulting in
a time step size �t"��t/�. Initial conditions were established by applying the external
gravity load and displacement boundary conditions for an initial, small time step ignoring
inertia e!ects. The solution was computed for four revolutions and in general, stabilized
after 2}3 revolutions. All solutions for the 3-D FE model were obtained using the



Figure 5. (a) Analytical and (b) 3-D FE model of a cantilever shaft with a transverse crack at midspan.

TABLE 1

Comparison of natural frequency and static de-ection for a cantilever shaft in bending

First natural frequency (Hz)

Static Cracked
de#ection

Model (mm) Uncracked Horizontal Vertical

Analytical 0)085 53)8 53)4 50)5
3-D FEA 0)097 52)0 51)7 49)9
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commercial FE code ANSYS [18]. Plotted displacements were made non-dimensional by
dividing through the vertical static de#ection from the FE analysis.
Table 1 lists the uncracked static de#ection and natural frequencies for the analytical and

the FE model. The resulting horizontal and vertical de#ections for the quasi-static case, i.e.,
�/�

	
"0)001, �

	
being the lowest lateral natural frequency of the uncracked FE model, are

shown in Figure 6. The horizontal de#ection from the nodal crack force approach and the
transient analysis show a slight discrepancy, while the vertical de#ections are practically
identical. The de#ection based on the analytical model proves too #exible in both
directions, which is due to the greater analytical compliance compared to 3-D FE results
[12, 13].
The shaft orbits for rotational speeds of �/�

	
"0)32, 0)45 and 0)9 are shown in Figure 7.

For �/�
	
"0)9, the rotational speed is close to the critical speed of the shaft; thus, the two

orbits from the linearized solutions are dominated by a single loop due to the "rst harmonic
excitation component of the crack forces. The transient solution shows a spiral from the
initial conditions at the origin approximately to the size of the nodal crack force solution
with each loop representing a full revolution of the shaft. The orbits for �/�

	
"0)46 exhibit

the double loop, typically associated with the existence of a crack in a shaft rotating close to
half its critical speed. Qualitatively, the orbit shapes from all methods are very similar, but
quantitatively, the nodal crack force approach yields a slightly better match than the
analytical solution.

3.2. EXAMPLE 2*LAVAL ROTOR

In example 2, a Laval rotor (D"25 mm, ¸"2000 mm) with point mass (m"20 kg) at
midspan under gravity load was considered; see Figure 8. The shaft was modelled with



Figure 6. Non-dimensional, quasi-static (a) horizontal and (b) vertical displacement of a cracked cantilever shaft
(}, NCF; - -, anal.; � trans.).

Figure 7. Non-dimensional orbits of a cantilever shaft for rotational speeds (a) �/�
	
"0)32, (b) 0)45 and (c) 0)9

(}, NCF; - -, anal.; �, trans. "rst and second rev.; �, trans. third rev.).

Figure 8. 3-D FE model of a simply supported Laval rotor with a transverse crack at quarter length.
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simple support boundary conditions at both ends and the material properties of aluminium
(E"70 GPa, �"0)3). The crack was located at quarter length with a/D"0)4. In the FE
model, only the region around the crack was modelled using eight-noded 3-D solid
elements. The remainder of the shaft was modelled using two-noded Timoshenko beam
elements with six degrees of freedom at each node. In the transition zone between beam and
3-D solid elements, very sti! four-noded shell elements overlaid the shaft cross-section,



TABLE 2

Comparison of natural frequency and static de-ection for a ¸aval rotor in bending

First natural frequency (Hz)

Static Cracked
de#ection

Model (mm) Uncracked Horizontal Vertical

Analytical 1)523 12)8 12)6 12)1
3-D FEA 1)520 12)8 12)8 12)6

Figure 9. Non-dimensional quasi-static (a) horizontal and (b) vertical displacement of a cracked Laval rotor
(}, NCF; - -, anal.; �, trans.).
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transferring the bending moment and providing the continuity of the shaft's slope. Damping
was included and the modal damping factor was set to 	"0)05. The analysis process for
both models was identical with that of the previous example.
Table 2 compares the natural frequencies and uncracked static de#ection. The good

agreement proves the validity of employing the shell elements for the transition between
beam and 3-D solid elements. The resulting horizontal and vertical de#ections for the
quasi-static case, i.e., �/�

	
"0)001, is shown in Figure 9. Again, the results from

the transient analysis and the nodal crack force approach are virtually identical, while
the analytical solution exhibits much greater values due to the greater local crack
compliance.
The vibration amplitude for various rotational speeds was computed and the results are

shown in Figure 10. The additional peaks at 1/2 and 1/3 of the uncracked natural frequency
due to the crack can be clearly identi"ed. Overall vibration amplitudes from transient and
nodal crack force analyses show good agreement while the analytical solution is
signi"cantly greater over the entire range of rotational speeds. Therefore, results from the
analytical approach are ignored in the following comparison of orbits, shown in Figure 11.
Quantitatively, the orbits show good agreement and seem to match more closely than the
orbits of example 1. In particular, the transient solution seems more stable over the course
of one revolution, which can be attributed to the damping and the diminishing e!ect of the
initial conditions.



Figure 10. Comparison of the non-dimensional vibration amplitude r/y
������

, where r"�x�#(y!y
������

)� over
the sub-critical range (}, NCF; - -, anal.; �, trans.).

Figure 11. Non-dimensional shaft orbits of a Laval rotor for rotational speeds (a) �/�
	
"0)32, (b) 0)45 and

(c) 0)9 (}, NCF; - -, anal.; �, trans. third rev.).
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4. CONCLUSIONS

A two-degrees-of-freedom analytical model, a linearized 3-D FE model and a non-linear
transient 3-D FE model were used to predict the vibration of a cracked shaft under gravity.
Due to the lack of experimental results for the speci"c cases presented here, the results from
the 3-D transient analysis must be regarded as the most accurate since they include the
non-linear e!ect of the crack breathing as well as the in#uence of the 3-D geometry. In
almost all cases, a signi"cant di!erence in vibration level predicted by the analytical model
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compared to the 3-D FE models can be observed. This is primarily due to the less accurate
analytical development of the local crack compliance. While this problem can be overcome
by using static 3-D FE analysis to develop the crack compliance matrix, other necessary
assumptions regarding the crack breathing behaviour and the problem of approximating
a 3-D structure with a beam model remain. On the other hand, the nodal crack force
approach exhibits excellent agreement with the transient analysis and uses a 3-D solid FE
model, thus avoiding assumptions regarding rotor or crack geometry altogether. The only
necessary assumption is the dominance of the uncracked steady state de#ection, which is
often the case in practice.
Another important criterion in evaluating each method is computational e$ciency.

While the e!ort for solving the equations of the much simpli"ed analytical model is
negligible, the nodal crack force method o!ered a computational performance bene"t of
40 : 1 compared to the 3-D transient analysis. Subsequently, evaluating the vibration for
di!erent crack parameters results in an even greater computational advantage since the
internal nodal crack forces do not have to be re-evaluated. Therefore, the authors believe
that the approach will prove valuable in the process of on-line crack detection on rotors
which cannot be well approximated by a beam model.
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